
STABILITY OF AN EULERIAN ROD 
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i. The stability of solutions of the nonlinear Euler equation 

"Y i k:p (x) y t - -  " dz2 \~-x-] / 
= 0 ,  k 2 =  PZ---!2 ( 1 . 1 )  

f i n  2 

was studied in [i] under the condition that the eigenvalues of the equation 

d2~ ~- k~9 (x) 0 ( 1 . 2 )  
d x  2 ~ Y 

are simple. The analysis led to an entire class of problems for which the eigenvalues of 
Eq. (1.2) are doubly degenerate. 

Continuing the analysis performed in [i] we now study Eq. (i i) for p(x) = x ~ -~ < ~ < 
and the boundary conditions 

y ( x l ) = 0 ,  d y ( x o ) / d x = O ,  ( 1 . 3 )  

wh ich  a r e  v a l i d  f o r  t h e  r o d  shown in  F i g .  1. For  t h i s  f o r m u l a t i o n  o f  t h e  p r o b l e m ,  t h e  t o t a l  
l e n g t h  o f  t h e  r o d  i s  unknown, and f o r  t h i s  r e a s o n  t h e  l e t t e r  s d e n o t e s  t h e  l e n g t h  c o r r e s p o n d -  
i ng  t o  a d i m e n s i o n l e s s  s e g m e n t ,  bounded by t h e  s e c t i o n s  x0 and xz ;  t h e  r e s t  o f  t h e  n o t a t i o n  
employed  in  Eqs .  ( 1 . 1 ) - ( 1 . 3 )  i s  c o n v e n t i o n a l  o r  shown in  F i g .  1. 

The p r o b l e m  a t  hand h a s  been  s o l v e d  o n l y  in  a l i n e a r  f o r m u l a t i o n  [ 2 ] .  The a s s u m p t i o n s ,  
made in  t h i s  and a number  o f  o t h e r  w o r k s ,  t h a t  t h e  rod �9  h i n g e d  a t  one  end and s u b j e c t e d  t o  
a f o r c e  P a t  t h e  o t h e r  end ,  i s  d i v i d e d  by t h e  p o i n t  where  d y / d x  = 0 i n t o  e q u a l  s e g m e n t s ,  and 
that the rod is symmetric with respect to this point, are valid only for rods with constant 
transverse sections v = 0. 

In the general case v # 0 the point x 0 where dy/dx = 0 divides the rod into unequal 
segments, whose ratio is unknown and therefore can be determined from the solution. The 
law p(x) = xV/must remain the same for the entire rod, otherwise the problem reduces to 
that studied in [i]. 

The stability of the solutions of the nonlinear equation (i.i) under the conditions 
(1.3) will be analyzed by the method of projections [3]�9 taking into account the two-dimen- 
sionality of the null space of the operator 

L~ = d2/dx 2 + k2x ~. 

2. After the function k2xVy (I - (dy/dx)=) ~ is expanded in a series in powers of y, 
dy/dx at the point (y, dy/dx) = (0, 0) Eq. (i.i) acquires the form 

Lky ~- 2 c,,y (dy/dx) n-~ -~ O, 
n = 2  

(2.1) 

where 

Biisk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 2, pp. 141- 
149, March-April, 1993. Original article submitted February 7, 1992. 
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Fig. 1 

i O n 
cn = n! Oy 0 (@/dz) '~-~ (k=x"Y (I - -  (dy/dx)~)~ 

The fundamental system of solutions of the equation L~y = 0 consists of the functions 
[4] 

{ ]/ 'x  lo  (2~io)x~/"~ -- co < v < -- 2, -- 2 <2 v < cr 

% i  (x) = ( ~7 cos (,~i In x), ~' = -- 2, 

I~TNo (2~i0)xa/2o),, -- oo < v < - -  2, -- 2 < v < m ,  

q~=i (x) = [ V x  s in  (~i In x), ~ = - -  2. 

Here %i is the i-th eigenvalue of the operator Lk; m = (v + 2)-z; Im(x) and Nm(x) are 

Bessel functions of the first and second kinds of order m. 

For -~ < v < -2, -2 < v < ~ the eigenvalues Xi (i = i, 2 .... ) are solutions of the 
equation 

(let la~:! = O, 

where a n =  ~f~(20)%x~/2~>: a12___ ~N(o(2c0~x~/e~)): i ,/2o 
V x  ~ --~'go * o + i \  aCOA'~ u }, a22== 

| '~- / 0 " ,  1 1 ' % ; \  - (I--c~176 AT ( 9  "~ 1 1 ' ~ ~  
~--~ &-o~axo- )--/x o " ,,~§ ), and for v = -2 they are solutions o~ the equation 

tan(%in(x~/x 0)) = 2~. 

The smallest eigenvalue XI makes it possible to write the stability condition for the 
solution of the equation Lky = 0 under the conditions (1.3) in the form 

,a = k 2 - -  ~ . ~  O, - -  o o < v < - - 2 ,  - - 2 < v < o o ,  ( 2 . 2 )  

p = k  2 - ~ - 0 , 2 5 ~ 0 ,  v = - - 2 .  

The last condition (2.2) is well known [2]. The equal sign in Eq. (2.2) corresponds to the 
stability boundary and determines the critical value k, 2, obtained in the linear approxima- 
tion. By virtue of the relations (2.2) the operator L k can be formally replaced by the 
operator LD = d2/dx 2 + (~ + %~)x v, which leads to simpler formulas. 

Before solving Eq. (i.i), we shall show that the space of the functions ~1~(x), ~p2~(x 1 

(i = i, 2, ...), which are square-integrable on the interval (x0, xl) , is a Hilbert space ~ 
with the scalar product <~k~(x), ~*j(x)> (~*j(x) is the function conjugate to the function 

~:(x) with respect to the scalar product). 

Since the functions %5(x) (k = i, 2, ] = I, 2 .... ) are orthogonal on the interval (x0, x l) 

with x v as the weighting function, g~*j(x) = xv~kj (x), to within constant factors, over the 

entire interval -~ < v < ~. 

Now, having determined the amplitude as the projection of the function y(x) on the 
characteristic subspace associated with the conjugate vectors %1 (x), ~21(x), e----<(y(x), y(x)), 

(~1(x), ,~$I(x))> ~, we seek the solution of Eq. (2.1) in the form of the series expansions 

( 2 . 3 )  
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After substituting the series (2.3) into Eq. (2.1) and equating terms with like powers 
of ~ up to third order inclusively we arrive at the system of equations 

Loyt = 0; 
8L o 

Loy~ + 2~1 ~ y, -~ 2B (Yt, Yx) ---- 0; 

8L o OL o 
Loy 3 § 3 ~  ~ y o + 6B (yl, y~.) -}- 3~% -g{ y~ -{- 6C (y~, Yt, Yt) =0, 

(2.4) 

(2.S) 

(2.6) 

where B(y/~, ~7) and C([y~, Y:z, N~) are matrix differential operators, defined as 

B (Yl, Y2) = -T Yl dx -- yo 777' 

The solution of Eq. (2.4) is a linear combination of the functions ~ll(X), T21(X), Yl = 

~t(X)+Oq2L(X)!, where o is a factor. 

Equations (2.5) and (2.6) have a solution when, and only when, for k = 1 and 2 

which follow from Fredholm's theorem of the alternative. Taking this into account and form- 
ing the scalar product of Eqs. (2.5) and (2.6) by %t(x), %1(x)we obtain 

/OLo , * \ 
~, \ ~  yl ~ t  ( x ) /  + (B (n, Y*), (~t (x)) = O, 

�9 / 8L o /OLo ( x ) )  _F 2 <B(y~, y2l, q)** (xl>_F g, \ .E~ y~, q~t ( x ) >  _ }_ 

+ 2 <c (y~, y .  y0, ~ (~)> = o, k = 1, 2, 

whence, since c= = 0 and therefore BI = 0 and Y2 = 0, we find 

/ 8 L  o , ~ ~ * 
~,2 \ ~  y~, %~ (x) + o ( c  0'1, yl, yl), ~,~ (x)> = o, 

/OL D , ~ * 
~,~ \ ~  y .  %, (x) + 2 (C(y l ,  y~, y0, ~ (x)) = o. 

(2.7) 

After substituting the expressions for Yl into Eqs. (2.7) we arrive at a system of two 
algebraic equations 
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Cl3o 3 + C12(~ 2 + Ci10 + B12(1~2 + Bll~t2 + B m  = 0, 

C230 "3 + C22~72 -+-, C21ff + B2#7]_t2 + B21~2 + B20 = 0, 

( 2 . 8 )  

where 

c13 = - ~,~ <x,~,~l (x) (d~_~l (x)/d~)~, ~11 (~)>; 
2 v * C~2 = - -  %~ <x (r (x)(dr (x)/dx) 2 -~ 2~o~ (x) d~911 (x)/dx de#21 (x)/dx), q?ll (X)>; 

C n  = - -  %~ <x v (2qhl (x) dr (x)/dx dr (x)/dx + q.~ (x) (@n (x)/dx)2), ~1 (x)>; 

z,~ = (~, ,q~l  (~), r (x)>; 

Rio = - -  ~ <XVf~I 1 (.~) (d(~l 1 (Jf)/d,z') 2, ~711 (,27)>; 

Co.,. ---- -- Z~ <:r," (Vn (x) (dff2 ~ (z)/dz) ~- -/2fl~2~ (x) d ~  (x)/dx d~.21 (x)/dx), ~ (x)>; 
o * 

C2~ ~ - -  %i < xv (2'9n (x) d(~n (x)/dx dr (x)/dx + r (a') (dr 1 (x)/dx)2), qLo 1 (x)>; 

2 v * ~00 --- - ~1 ( x  ~i~ (,~.) (d~11 (~),'d~F-, ~,~ (~)>. 

Following the usual procedure of calculating the stability [3], we determine the quad- 
ratic form of the system (2.8), using the method of successive approximations. As a first 
approximation we can take the solution of the linearized system (2.8): 

B21BlO -- BllB2o 
~1 = BllCzI_ B21Cll �9 

Substituting the expressions for 01 into Eq. (2.8) gives an equation for two conical 
sections in the (~2, o) plane: 

gl (~t2, (~) = Cl2ff 2 + Cliff + Bl2fflx2 + Bll~t2 + Rio + O[ff] 3 ---- 0, 

g2 (.It2, O) = C22 G2 @ C2lff + B220~t2 + B21 ~.12 "{-B20 + 0](~] 3 = 0. 

H e r e  BlO = BlO + C13ff~ a n d  Boo = B20 + C23~. 

The existence of two independent variables ~2 
tions of the system (2.9). Depending on the 
equivalent to the system (2.9) 

and existence of solu- 
sign of the discriminant of the cubic equation 

o guarantees the 

( 2 . 9 )  

G = G3ff 3 + G2o z + Glff + Go = 0, 
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w h e r e  G3 = BI2C22--B22C,2; G2 = BtlC22 + B12C21--B21Ct2 - -  B22Cll; G! = B I 1 C 2 1 - - B I 2 B ~ - - B 2 2 B t o  - -  B ~ C t l ;  

Go=B~B~o--B~B~ol, the system (2.9) has, besides the trivial solution y(x) = 0, three real 

solutions or a single real and two complex-conjugate solutions. If the discriminant is zero, 
then two or all three real roots are equal to one another. The existence of real and complex 
solutions is explained by the fact that under the action of the force P the rod will be 
deformed from the state y(x) = 0, x 0 ! x < x~ into a new state of equilibrium, stable or 
unstable, undergoing monotonic or oscillatory motion. This explanation becomes quite 
obvious, if the parameter ~ is considered to be the time in the space of images after the 
corresponding initial-boundary-value problem with the initial condition y(x) = 0 is trans- 
formed into this space (for example, by a Laplace transform). 

Another aspect of the existence of a set of solutions (~=(i), o(i)) (i = 1-3) of the 
system (2.9) is that these solutions refer to different rods or to rods of different length, 
the other parameters being the same. Indeed, since ~ and s are the same for all solutions 

(D~(i), o(i)) (i= 1-3), it follows from Eqs. (2.2) and (2.3) that to each solution of the 

system (2.9) there corresponds the characteristic value k 2 = ~ + 0.5~2(i)g 2 and, therefore, 
a length. 

Calculations performed taking as an example the starting data x 0 = 3~/2 and v = -2 
showed that the system (2.9) has three real solutions: (~2(~); o(~) = (6.192; -0.158), 

(~=(~); o (2)) = (5.161; 0.375), (~2(3); o(s)) = (6.880; 0.133) (Fig. 2, points of intersec- 

tion of the conical sections 1-3). 

The deflection yl(x) in the range x = x 0 • v was calculated for each of the solutions, 
presented above, of the system (2.9). The results of'the calculations are shown in Fig. 3, 
where the numbers of the solutions of the system (2.9) correspond to the numbers of the 
rods. The computational results show that for all rods the deflection is zero at the point 
(hinge point) x~ =~0.787~ (y(x~) = 0 by definition), so that, as noted above, Ix 0 - x21 

[x~-xo[. 

Analysis of the stability of the solutions of Eq. (2.1) with the conditions (1.3) re- 
duces to determining the eigenvalues of the Jacobian matrix of the system (2.9) with appro- 
priate parameterization and should be done for each i-th rod using the values obtained for 
(~=(i), o(i))./The parameterization of the system (2.9) consists of representing the func- 
tions gi(~, o)[(i = i, 2) as functions of the parameter ~. Combining Eqs. (2.3) and (2.9) 
and using the normalization condition ~ = 1 we can write the system (2.9) in the form 

gl (~) = 4~ 2 (C~~ ~ § C11~ ~ § BI~(~ "I § 

+ B l 1 ~  1 + ~ l o ~ J )  + 0 (I ~1 + L ~ I) s = 0, 

~ (,a) = 4~ s ( C ~ 2 ~  ~ + C ~ 1 ~  ~ + B ~  ~ + B ~ I ~ '  + 

§ N~oV~ 2) + O(1~1 §  )~ = o. 
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The the solution of Eq. (2.1), with the conditions (1.3), is stable, if the real parts 

of the eigenvalues of the Jacobian matrix 

M = I s~l, 

w h e r e  q l  = 5gt(D)/0g7 t; sI, == ~ l (g) /0 (~DT~) ;  ~ = ag=(D)/oD7~; e== i = ags(D)/a(~gT~), f a r e  n e g a t i v e .  
S i n c e  a t  e a c h  p o i n t  ( > = ( n ) ,  o ( n ) )  w i t h  s m a l l  > we h a v e  d e t M =  bt2detM(},~").e<~>)- k O]>1,}', we 

write the stability conditions in the form 

max(>  - (") s~,O) h a s ,  ,~tRe . < 0 ,  

IRe (g~l) @ ~ ) )  ] > I (0~-~ -~ 02) 0,25 COS (0,5 3~r C{.vl~,I)t" ( 2 . 1 0 )  

Here sl (n), s2 (n) are the eigenvalues of the matrix 

(,4 (r4"', 
= - - ( 11 > J s  - -  + 

' t, ~ (n) _ (n) Im ('~) ~- i r tegl2  Res~'~ ) 4Ims12 s2l, 

(,o (~)' lm (s~) s~  }) ~- 4 Re s~  ) Im s~, 

If the eigenvalues sz (n), s2 (n) are real, then the conditions (2.10) simplify: 

(n) IllaX (US 1 , (~)~ b~s~ ;<..0, 

We note that the inequalities (2.11) are valid 
(2.9) intersect strictly in the plane (D2, o), 

d e t M ( ( , z )  o('o)>0. ~12 , ( 2 . 1 1 )  

when, and only when, the conical sections 
i.e., 

a& (~, z)/@2 Ogl (p~, s)/ao I 
(let 0g 2 (~2, ~ r (p2, o)/00 Of= O. 

Returning to the complex values sl (n), s2 (n), we note that a rod loaded with a constant 
force cannot be an auto-oscillatory system and therefore the real parts Re sz(n), Re s2 (n), 
cannot change sign, passing through zero. 

The calculation of the eigenvalues of the Jacobian matrix for the solutions obtained 
above (~2(n), o(n)) (n = 1-3) gave the following results: 

(s~l); s~ L)) ---- (--  9,504 -F 7,684/; - -  9.504 - -  7,68~i), 

(s~); s~ 2)) : (2,852 q- t0,200i; 2,852 - -  t0,2000, 

(s(la); s~ 3) ) = (t2,873; --  6,005), 

Whence it follows that the first rod is stable for ~ > 0, the second rod is stable for ~ < 0, 
and the third rod is unstable for any ~. 

These results require some explanation. We start with the fact that, as one can see 
from Eq. (2.2), the value ~ = 0 corresponds to the critical force P... = P(kl) such that 
P > P..o for ~ > 0 and vice versa. Then stability of the second rod~for P ~ P, corresponds 
to th$ general ideas about loaded rods; the condition of stability of the first rod P > P... 
does not mean that P can be arbitrarily large (the conditions (2.10) and (2.11) are valid ~ 
for small values of ~), and indicates that for P < P, the stable position of the rod does 
not correspond to dy(x0)/dx = 0. This condition will be achieved at a different point x 
or at all points x in the case of the trivial solution. As far as the third rod is concerned, 
its deformed state with dy(x0)/dx = 0 is stable for any P, i.e., for a rod of fixed length 
and configuration it is impossible to achieve with a force P a stable deformed state for 
which maximum deflection would be achieved at the point x0. 
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3. We now consider the rod shown in Fig. 4. Let the force P depend on the deflection: 

Here Po and 8 are constants: 

P = po( t - ,~  A (v) ). 

x 1 
A 

A (g) ---- ~ - -  ~ ,(t - -  (dy/dx)2)o,~dx. 
/ 

x 0 

(3.1) 

When a force P is applied at xl, the other end of the rod x 0 can shift in a direction 
perpendicular to the axis of the rod, overcoming the resistance of the spring with spring 
constant ~. As the deflection increases, P decreases and the spring will cause the rod to 
return to its initial position. In this formulation, there exist all prerequisites for 
the appearance of undamped periodic oscillations - limit cycles. 

After expanding in powers of (y, dy/dx) at the point (y, dy/dx) = (0, 0) Eq. (i.i) 
acquires the form 

x 1 

+ y., - -  = O ,  

~ 2  XOI 

k 2 = Po lz 
E l.n z" 

( 3 . 2 )  

The boundary conditions corresponding to the manner in which the rod is attached are 

g ( x l )  = O, d y ( x o ) / d x + ~ y ( x o ) = O ,  

which lead to different (compared with Eq. (1.3)) relations for the eigenvalues of the 
operator L k. Now they are solutions of the equation 

(3.3) 

de t  la~j[ = O, 

where 

= - -  ' ~ - 0  ~ ' ( , ) + I I ,  - t O  I 0  ] "  

for -~ < vJ< --2, --2 < v < ~ and the equation 

(1 + 2CCxo) tg(~ln(xl /xo)  ) =  2~ 

with vi = -2. 

The rest of the procedure of analyzing the stability of the solutions (3.2) is similar 
to Sec. 2 for a rod loaded with a constant force. For this reason, using the notation 

x I x 1 

Ai (y) = ~ dyddz dx, A U (y) = ~ dyddx d y / d x  dx, 
X 0 X 0 

X 1 

X o 

we indicate only the differences in the analysis. This concerns the matrix differential 

operators 
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B (yl, y~) = -~ ~ ~ -- ~2 (v) + a [~ -- ~, (V) , 

%~( /~v~% ~..~(v)) + 

which lead to the coefficients 

c~  = ~i (1%,r (~), ~d, (x)} - (~%~ (~) (~%1 (~)/d~)~, ~*~ (~))), 
c~, = ~(t~ <x~ (A~:%~ (x) + 2A~%~ (~)), ~*~ ( x ) ) - < S ( % l  (~)(d%~ (~)/dx) 2 + 

t , /  * 4- 2%1 (x) dq~ n (x), dx dqM (x)/dx), q~il (x))), 

c~, = ~.~ (~ ( ~  ( 2 ~ % ~  (~) + A~%~ (~)), ~*~ (~)> -- 
' / ') * - ( ~  (2%~ (~) d%~ (~)/d~ d%, (x)/d~ = %~ (~) (d%~ (~)~ d~)-), ~ .  (~))), 

2 V * * B~o = ~ (~<x A.%~ 9r ~(x) )  - (:~%~ (x)(d%~ (x)/dx?, ,~. (x)>), ~ = ~, 2. 

The remaining coefficients in the system (2.9) are unchanged, though, of course, they depend 
implicitly on ~ through ~i. 

Continuing the stability analysis, just as in Sec. 2, we can find solutions of the 
equation G = 0. The function G = G(o, 6), obtained with v = 0, x 0 = 0, and ~ = i, is 
presented in Fig. 5. Using the same initial data and fixed values of $ the solutions of the 
system (2.9) and the eigenvalues of the Jacobian matrix which correspond to the solutions 
were determined. The results were as follows: 

a) with B = 0.550 

(I)" #1)) ( - - I A 9 6 ;  0,t23), (s}~); s~ ' ) )  ~ [ 2  , = 

= (2,53~: - -  ( " -  = - -  ),oo0), (p~2): at.,) ) ( - -  t , t 3 6  0 ,4 t t i ;  0,352 + 1,6630, 

(s~); s~ ~)) = ( 3 , 1 7 5 -  0 ,6i2i ;  0 ,0439-} -0 ,2850  

[the third solution (~2 (s) 
sented]; 

b) with ~ = 0.612 

, o(s)), the complex conjugate of the second solution, is not pre- 

(,~');  o(1)) = (_ 1,759; 0,168), (s~'); s~ 1)) = (2,927; - -  0,269), 

(u(2); #2)) = (_ I A 2 3  4- 0,273i; 0,0856 -- 0,998@ 

(~2~; ~ ) )  = (3 /83 + 0,~t0~; 0 - 0,2520; 

c) with $ = 0.700 

( ~ ) ;  #1))  = (_ 2.256; 0,372), (s~ 1), s~ 1)) = (3,4,31; - -  0,254), 

(~t~-); #2))  _ ( _  1,887 + 0,0982i; - -  O, l l4  - -  0.481i), 

(s~2); s~ 2)) = (3,809 -[- 0,188i; - -  0 ,0 i64  - -  0,272i).  

According to the calculations, for all values of ~ indicated the real solutions corre- 
sponding to states of stationary equilibrium of the rod are unstable for any value of ~. 
The complex-conjugate solutions, corresponding to vibrational states of the rod, in the 
case a are stable for ~ < 0 (Fig. 6, curve i), they are unstable in the case c for any ~, 
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and for N < 0 the phase trajectory has the form of the curve 2. In the case b the vibra- 
tional regime is a limit cycle with ~ < 0 (curve 3). Here, just as in Sec. 2, in each of 
the cases a-c the different solutions of the system (2.9) correspond to rods of different 
length. For complex-conjugate solutions the rod lengths are the same. 

lo 

2. 
3. 

4. 
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